Platinum-decorated carbon nanotubes for hydrogen oxidation and proton reduction in solid acid electrochemical cells.

نویسندگان

  • V Sara Thoi
  • Robert E Usiskin
  • Sossina M Haile
چکیده

Pt-decorated carbon nanotubes (Pt-CNTs) were used to enhance proton reduction and hydrogen evolution in solid acid electrochemical cells based on the proton-conducting electrolyte CsH2PO4. The carbon nanotubes served as interconnects to the current collector and as a platform for interaction between the Pt and CsH2PO4, ensuring minimal catalyst isolation and a large number density of active sites. Particle size matching was achieved by using electrospray deposition to form sub-micron to nanometric CsH2PO4. A porous composite electrode was fabricated from electrospray deposition of a solution of Pt-CNTs and CsH2PO4. Using AC impedance spectroscopy and cyclic voltammetry, the total electrode overpotential corresponding to proton reduction and hydrogen oxidation of the most active electrodes containing just 0.014 mg cm-1 of Pt was found to be 0.1 V (or 0.05 V per electrode) at a current density of 42 mA cm-2 for a measurement temperature of 240 °C and a hydrogen-steam atmosphere. The zero bias electrode impedance was 1.2 Ω cm2, corresponding to a Pt utilization of 61 S mg-1, a 3-fold improvement over state-of-the-art electrodes with a 50× decrease in Pt loading.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Platinum-decorated carbon nanotubes for hydrogen oxidation and proton reduction in solid acid electrochemical cells† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc03003f

Pt-decorated carbon nanotubes (Pt-CNTs) were used to enhance proton reduction and hydrogen evolution in solid acid electrochemical cells based on the proton-conducting electrolyte CsH2PO4. The carbon nanotubes served as interconnects to the current collector and as a platform for interaction between the Pt and CsH2PO4, ensuring minimal catalyst isolation and a large number density of active sit...

متن کامل

Electrocatalytic oxidation of hydrogen peroxide and cysteine at a glassy carbon electrode modified with platinum nanoparticle-deposited carbon nanotubes.

A glassy carbon electrode modified with platinum nanoparticle-decorated carbon nanotubes (Pt-CNT/GCE) was prepared. The electrochemical behaviors for the catalysis oxidations of hydrogen peroxide and cysteine were studied. The Pt-CNT/GCE showed catalytic activity for electro-oxidation of hydrogen peroxide at 0.6 V in PBS (pH = 7.0) and for that of cysteine at 0.55 V in sulfuric acid medium (pH ...

متن کامل

Electrodeposition of platinum nanoparticles on reduced graphene oxide as an efficient catalyst for oxygen reduction reaction

Reduced graphene oxide film was synthesized on a glassy carbon electrode by electro reduction of graphene oxide powders in aqueous solution. Then platinum nano particles were deposited on reduced graphene oxide film that was deposited on the glassy carbon electrode via electro reduction of platinum salt. The Physical morphology of the platinum on reduced graphene oxide film was evaluated by sca...

متن کامل

Electrochemical Study of Hydrogen Adsorption/Reduction (HAR) Reaction on Graphene Oxide as Electrocatalyst for Proton Exchange Membrane Fuel Cells

In the current work, graphene oxide (GO) samples were prepared at room temperature from graphite flakes using a modified Hummer's method to produce metal-free electrocatalysts. The effect of the duration of the oxidation process on the structural, chemical and physical characteristics of the GO samples was evaluated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), ...

متن کامل

Oxygen reduction reaction on Pt/C at the presence of super paramagnetic of Fe3O4 nanoparticles for PEMFCs

In this paper the role of super paramagnetic iron oxide nanoparticles (SPI) on Platinum nanoclusters on activated carbon (Pt/C) for electrocatalytic oxygen reduction reaction was considered. Four composites of Pt/C and super paramagnetic iron oxide nanoparticles were prepared with the same total composites weight and different loading of Pt/C (1.2, 0.6, 0.4 and 0.3 mg ). The composite attached ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical science

دوره 6 2  شماره 

صفحات  -

تاریخ انتشار 2015